Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes.
نویسندگان
چکیده
Silicon is widely recognized as one of the most promising anode materials for lithium-ion batteries due to its 10 times higher specific capacity than graphite. Unfortunately, the large volume change of Si materials during their lithiation/delithiation process results in severe pulverization, loss of electrical contact, unstable solid-electrolyte interphase (SEI), and eventual capacity fading. Although there has been tremendous progress to overcome these issues through nanoscale materials design, improved volumetric capacity and reduced cost are still needed for practical application. To address these issues, we design a nonfilling carbon-coated porous silicon microparticle (nC-pSiMP). In this structure, porous silicon microparticles (pSiMPs) consist of many interconnected primary silicon nanoparticles; only the outer surface of the pSiMPs was coated with carbon, leaving the interior pore structures unfilled. Nonfilling carbon coating hinders electrolyte penetration into the nC-pSiMPs, minimizes the electrode-electrolyte contact area, and retains the internal pore space for Si expansion. SEI formation is mostly limited to the outside of the microparticles. As a result, the composite structure demonstrates excellent cycling stability with high reversible specific capacity (∼1500 mAh g(-1), 1000 cycles) at the rate of C/4. The nC-pSiMPs contain accurate void space to accommodate Si expansion while not losing packing density, which allows for a high volumetric capacity (∼1000 mAh cm(-3)). The areal capacity can reach over 3 mAh cm(-2) with the mass loading 2.01 mg cm(-2). Moreover, the production of nC-pSiMP is simple and scalable using a low-cost silicon monoxide microparticle starting material.
منابع مشابه
Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes.
Submicrometer-sized capsules made of Si nanoparticles wrapped by crumpled graphene shells were made by a rapid, one-step capillary-driven assembly route in aerosol droplets. Aqueous dispersion of micrometer-sized graphene oxide (GO) sheets and Si nanoparticles were nebulized to form aerosol droplets, which were passed through a preheated tube furnace. Evaporation-induced capillary force wrapped...
متن کاملComputational Evaluation of Amorphous Carbon Coating for Durable Silicon Anodes for Lithium-Ion Batteries
We investigate the structural, mechanical, and electronic properties of graphite-like amorphous carbon coating on bulky silicon to examine whether it can improve the durability of the silicon anodes of lithium-ion batteries using molecular dynamics simulations and ab-initio electronic structure calculations. Structural models of carbon coating are constructed using molecular dynamics simulation...
متن کاملMicro-sized nano-porous Si/C anodes for lithium ion batteries
: [email protected] .ac.cn (W. Han). Abstract The unique micro-sized (2–10 mm) Si/C composites consisting of 20 nm carbon coated secondary Si were synthesized from the abundant and low cost Al–Si alloy ingot by acid etching, ball-milling and carbonization procedure. The nano-porous Si/C composites provide a capacity of 1182 mAh g 1 at a current density of 50 mAg , 952 mAh g 1 at 200 mAg , 815 mAh g...
متن کاملProtected High - Capacity Anodes for Li - Ion Battery Applications
The lithium-ion battery (LIB) is a widely used energy storage system with applications spanning from small electronics to automobiles. An important figure of merit for LIBs is specific capacity, typically reported in mAh/g. One way to improve the overall capacity of LIBs is to replace the ubiquitous carbon anode with silicon or tin, which promise specific capacity of 4,000 and 994 mAh/g, respec...
متن کاملGCEP Report - External Project title : High - Energy - Density Lithium Ion Battery using Self - Healing Polymers Investigators
In this report, we describe our work towards high performance lithium ion batteries through self-healing polymer approach. In this initial stage of the project, we first design and synthesis a series of self-healing polymers with different mechanical properties and self-healing capabilities. Further comparison of the battery cycling will give a deeper understanding of the relationship between p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 9 3 شماره
صفحات -
تاریخ انتشار 2015